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Multi-Label Object
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Multi-label Learning(MLL)

Figure: Multi-label Learning
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MLL- Applications

Text Categorization

Automatic annotation for multimedia contents

Image, Audio, Video

Bioinformatics

World Wide Web

Information Retrieval

Directed marketing
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Multi-label Learning(MLL) What is MLL

Formal Definition of MLL

Settings

X : d -dimensional feature space Rd

Y : label space with L labels [1,2,3, . . . ,L]

Inputs

D : training set with N examples (xi ,Yi)|1 < i < N

xi ∈ X is a d -dimensional feature vector (xi1, xi2, xi3, . . . , xid)
T

Yi ∈ Y is the label set associated with xi .

Outputs
h : multi-label predictor X → 2Y
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The Major Challenge
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Multi-label Learning(MLL) Challenge and Philosophy

The Basic Philosophy

Exploiting Label Correlations
For example
An image labeled as lions and grassland would be likely annotated
with label Africa
A document labeled as politics would be unlikely labeled as
entertainment
Order Of Correlations

First-Order Strategy : Tackle MLL problem in a label-by-label style,
ignore the co-existence of other labels.
Second-Order Strategy: Tackle MLL problem by considering
pairwise relations between labels.
High-Order Strategy : Tackle MLL problem by considering
high-order relations between labels.
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The Major Evaluation Metrics
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The Major Learning Algorithm
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Classifiers Chain What is Classifiers Chain

Basic Idea

The Classifiers Chain model(CC) involves |L| binary classifiers as in
BM. Classifiers are linked along a chain where each classifier deals
with the binary relevance problem associated with label lj ∈ L. The
feature space of each classifier in the chain is extended with the 0/1
label associations of all previous classifiers. Table 1 shows a simple
example of CC model with the input x1 = [1,0,1,0,0,1]. Finally, it
forms a classifiers chain.

Pros: more appropriate for realistic correlations.
Cons: high model complexity, less scalable.
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My Proposed Method Initial network

Framework

1 The conditional entropy builds a complete label-correlated graph,
according the maximum conditional entropy principle of the
deleted loop, we obtain a directed acyclic graph, i.e. the initial
network.

2 The initial network is sorted by topology, and the initial order is
obtained. According to algorithm 1, the optimal parent label sets is
obtained.

3 To get the optimal Bayesian networks(BN) structure according to
Algorithm 2.

4 Topological sorting of BN labels, training and testing.
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My Proposed Method Initial network

Conditional Entropy

If H(Y |X = x) is the entropy of the discrete random variable Y
conditioned on the discrete random variable X taking a certain value x,
then H(Y |X ) is the result of averaging H(Y |X = x) over all possible
values x that X may take.

H(Lj |Li) =
∑
li∈Li

p(li)H(Lj |Li = li)

= −
∑
li∈Li

p(li)
∑
lj∈Lj

p(lj |li)log(lj |li)

= −
∑
li∈Li

∑
lj∈Lj

p(li , lj)logp(lj |li)

= −
∑
li∈Li

∑
lj∈Lj

p(li , lj)log
p(li , lj)
p(li)

(1)

conditional entropy is measured correlation between labels.
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My Proposed Method Bayesian networks structure

Bayesian information Criterion Scoring Function

S(G) = LD(G)− DimG

2
logN (2)

LD(G) = −N
L∑

i=1

H(li |PA(li)) (3)

S(G) =
L∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
−

L∑
i=1

qi(ri − 1)logN (4)
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learning the optimal parent label sets
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Learning Bayesian networks structure
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My Proposed Method Experimental result

Table: characteristics of data sets

data sets InstancesLabelsFeaturesDomain
emotions 593 6 72 music

scene 2407 6 294 image
flags 194 7 19 image
yeast 2417 14 103 biology

art 5000 26 462 text
genbase 662 27 1185 biology
education 5000 33 550 text
science 5000 40 743 txet
medical 978 45 1149 text
enron 1702 53 1001 text

CAL500 502 174 68 music
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Thank you
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