Multi-label Learning(MLL) Classifier Chain

speaker Suhe Ye

College of Mathematics And Statistics, ShenZhen University

October 8, 2018

Multi-label Learning(MLL)

- What is MLL
- Challenge and Philosophy
- Evaluation Metrics And Learning Algorithms
- Classifiers Chain
 - What is Classifiers Chain

- Initial network
- Bayesian networks structure
- Experimental result

Multi-label Learning(MLL) • What is MLI

- Challenge and Philosophy
- Evaluation Metrics And Learning Algorithms
- Classifiers Chain
 - What is Classifiers Chain
- My Proposed Method
 - Initial network
 - Bayesian networks structure
 - Experimental result

What is MLL

Multi-Label Object

Sunset Clouds Trees Countryside

Multi-label Learning(MLL)

Figure: Multi-label Learning

MLL- Applications

- Text Categorization
- Automatic annotation for multimedia contents
 - Image, Audio, Video
- Bioinformatics
- World Wide Web
- Information Retrieval
- Directed marketing •

Formal Definition of MLL

Settings

- \mathcal{X} : d -dimensional feature space \mathbb{R}^d
- \mathcal{Y} : label space with L labels [1, 2, 3, ..., L]

Inputs

- \mathcal{D} : training set with N examples $(x_i, Y_i)|1 < i < N$
- $x_i \in \mathcal{X}$ is a d-dimensional feature vector $(x_{i1}, x_{i2}, x_{i3}, \dots, x_{id})^T$
- $Y_i \in \mathcal{Y}$ is the label set associated with x_i .

Outputs

h : multi-label predictor $\mathcal{X} \rightarrow 2^{\mathcal{Y}}$

Multi-label Learning(MLL)

- What is MLL
- Challenge and Philosophy
- Evaluation Metrics And Learning Algorithms
- Classifiers Chain
 - What is Classifiers Chain

- Initial network
- Bayesian networks structure
- Experimental result

The Major Challenge

- $q=5 \rightarrow 32$ label sets
- $q=10 \rightarrow \sim 1$ k label sets
- $q=20 \rightarrow \sim 1$ M label sets

The Basic Philosophy

Exploiting Label Correlations For example

An image labeled as lions and grassland would be likely annotated with label Africa

A document labeled as politics would be unlikely labeled as entertainment

Order Of Correlations

- First-Order Strategy : Tackle MLL problem in a label-by-label style, ignore the co-existence of other labels.
- Second-Order Strategy: Tackle MLL problem by considering pairwise relations between labels.
- High-Order Strategy : Tackle MLL problem by considering high-order relations between labels.

Multi-label Learning(MLL)

- What is MLL
- Challenge and Philosophy
- Evaluation Metrics And Learning Algorithms

Classifiers Chain

What is Classifiers Chain

- Initial network
- Bayesian networks structure
- Experimental result

The Major Evaluation Metrics

The Major Learning Algorithm

Multi-label Learning(MLL)

- What is MLL
- Challenge and Philosophy
- Evaluation Metrics And Learning Algorithms

Classifiers ChainWhat is Classifiers Chain

- Initial network
- Bayesian networks structure
- Experimental result

Basic Idea

The Classifiers Chain model(CC) involves |L| binary classifiers as in BM. Classifiers are linked along a chain where each classifier deals with the binary relevance problem associated with label $I_j \in L$. The feature space of each classifier in the chain is extended with the 0/1 label associations of all previous classifiers. Table 1 shows a simple example of CC model with the input $x_1 = [1, 0, 1, 0, 0, 1]$. Finally, it forms a classifiers chain.

h_i	y
$h_1:[1,0,1,0,0,1]$	1
$h_2:[1,0,1,0,0,1,1]$	0
$h_3: [1, 0, 1, 0, 0, 1, 1, 0]$	1
$h_4: [1, 0, 1, 0, 0, 1, 1, 0, 1]$	0
$h_5:[1,0,1,0,0,1,1,0,1,0]$	0
$h_6: [1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0]$	1

• Pros: more appropriate for realistic correlations.

• Cons: high model complexity, less scalable.

Initial network

Outline

Multi-label Learning(MLL)

- What is MLL
- Evaluation Metrics And Learning Algorithms

What is Classifiers Chain

- Initial network
- Bayesian networks structure

Framework

- The conditional entropy builds a complete label-correlated graph, according the maximum conditional entropy principle of the deleted loop, we obtain a directed acyclic graph, i.e. the initial network.
- The initial network is sorted by topology, and the initial order is obtained. According to algorithm 1, the optimal parent label sets is obtained.
- To get the optimal Bayesian networks(BN) structure according to Algorithm 2.
- Topological sorting of BN labels, training and testing.

Conditional Entropy

ŀ

If H(Y|X = x) is the entropy of the discrete random variable Y conditioned on the discrete random variable X taking a certain value x, then H(Y|X) is the result of averaging H(Y|X = x) over all possible values x that X may take.

$$\begin{aligned} \mathcal{H}(L_{j}|L_{i}) &= \sum_{l_{i} \in L_{i}} p(l_{i}) \mathcal{H}(L_{j}|L_{i} = l_{i}) \\ &= -\sum_{l_{i} \in L_{i}} p(l_{i}) \sum_{l_{j} \in L_{j}} p(l_{j}|l_{i}) \log(l_{j}|l_{i}) \\ &= -\sum_{l_{i} \in L_{i}} \sum_{l_{j} \in L_{j}} p(l_{i}, l_{j}) \log p(l_{j}|l_{i}) \\ &= -\sum_{l_{i} \in L_{i}} \sum_{l_{j} \in L_{j}} p(l_{i}, l_{j}) \log \frac{p(l_{i}, l_{j})}{p(l_{i})} \end{aligned}$$
(1)

conditional entropy is measured correlation between labels.

Multi-label Learning(MLL)

- What is MLL
- Challenge and Philosophy
- Evaluation Metrics And Learning Algorithms
- **Classifiers** Chain
 - What is Classifiers Chain

- Initial network
- Bayesian networks structure
- Experimental result

Bayesian information Criterion Scoring Function

$$S(G) = L_D(G) - \frac{Dim_G}{2} log N$$
⁽²⁾

$$L_{D}(G) = -N \sum_{i=1}^{L} H(I_{i} | PA(I_{i}))$$
(3)

$$S(G) = \sum_{i=1}^{L} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} N_{ijk} \log \frac{N_{ijk}}{N_{ij}} - \sum_{i=1}^{L} q_i(r_i - 1) \log N$$
(4)

learning the optimal parent label sets

```
Algorithm 1 learning the optimal parent label sets
input: D:training data set containing L
                                                           labels
(l_1, l_2, l_3, \ldots, l_L)
initial order: l_1, l_2, l_3, \ldots, l_L
output: PA: optimal parent label sets PA of each label
 1: PA = \emptyset;
 2: for i = 1 to L do
    Pred_i = [l_1, l_2, \dots, l_{i-1}, l_{i+1}, \dots, l_L];
 3:
 4: PA(l_i) = \emptyset;
 5: maxBIC = BIC(l_i|PA(l_i));
      while j \leq L \bigcup N_{PA(l_i)} \leq \log_2 N do
 6:
         let l_z be the label in Pred_i PA(l_i) that maximizes
 7.
         BIC(l_i|PA(l_i)||l_z);
    BIC_{new} = BIC(l_i | PA(l_i) \cup l_z);
 8:
        if BIC > maxBIC then
 9:
           PA(l_i) = PA(l_i) \bigcup_{z}
10:
        end if
11:
12:
      end while
      PA = PA[]PA(l_i)
13:
14: end for
15: return PA:
```

Learning Bayesian networks structure

Algorithm 2 learning the optimal Baysian networks structure

input: G: A directed graph built by best parent label sets output: G':the optimal Baysian networks(a directed acyclic graph)

- 1: while G has circles do
- 2: CG=circle
- 3: maxweight=-inf;
- 4: for i = 1 to size(CG, 1) do
- 5: for j = 1 to size(CG, 1) do
- 6: if CG(i, j) > maxweight then
- 7: maxweight = CG(i, j);
- 8: row=i;
- 9: column=j;
- 10: end if
- 11: end for
- 12: end for
- 13: CG(row,column)=0;
- 14: end while
- 15: G'=G;
- 16: return G';

Multi-label Learning(MLL)

- What is MLL
- Challenge and Philosophy
- Evaluation Metrics And Learning Algorithms

Classifiers Chain

What is Classifiers Chain

- Initial network
- Bayesian networks structure
- Experimental result

Table: characteristics of data sets

data sets	Instances	Labels	Features	Domain
emotions	593	6	72	music
scene	2407	6	294	image
flags	194	7	19	image
yeast	2417	14	103	biology
art	5000	26	462	text
genbase	662	27	1185	biology
education	5000	33	550	text
science	5000	40	743	txet
medical	978	45	1149	text
enron	1702	53	1001	text
CAL500	502	174	68	music

2

hammingloss

datasets	BR	LR	CC	GCC	LPLC	BNCC
emotions	0.1808 ± 0.0065	0.1795 ± 0.0103	0.1827 ± 0.0094	0.3163 ± 0.0351	0.3032 ± 0.0236	0.1815 ± 0.0038
flags	0.2780 ± 0.0127	0.2681 ± 0.0105	0.2668 ± 0.0153	0.3220 ± 0.0336	0.4411 ± 0.0393	0.2645 ± 0.0020
scene	0.0787 ± 0.0035	0.0775 ± 0.0035	0.0800 ± 0.0038	0.1030 ± 0.0091	0.1046 ± 0.0076	0.0746 ± 0.0019
yeast	0.1948 ± 0.0042	0.1981 ± 0.0037	0.1934 ± 0.0041	0.1884 ± 0.0228	0.2267 ± 0.0088	0.1908 ± 0.0021
medical	0.0094 ± 0.0006	0.0249 ± 0.0012	0.0094 ± 0.0006	0.7745 ± 0.0404	0.0168 ± 0.0021	0.0092 ± 0.0004
enron	0.0506 ± 0.0028	0.0518 ± 0.0028	0.0501 ± 0.0026	0.0467 ± 0.0019	0.0686 ± 0.0076	0.0499 ± 0.0005
genbase	0.0006 ± 0.0007	0.0265 ± 0.0090	0.0009 ± 0.0008	0.0007 ± 0.0006	0.0032 ± 0.0020	0.0005 ± 0.0001
science	0.0330 ± 0.0011	0.0347 ± 0.0007	0.0337 ± 0.0007	0.0330 ± 0.0016	0.0415 ± 0.0076	0.0334 ± 0.0007
art	0.0523 ± 0.0007	0.0570 ± 0.0008	0.0539 ± 0.0012	0.0650 ± 0.0146	0.1014 ± 0.0196	0.0539 ± 0.0003
CAL500	0.1376 ± 0.0043	0.1464 ± 0.0033	0.1888 ± 0.0159	0.1429 ± 0.0043	0.3692 ± 0.0581	0.1794 ± 0.0020
education	0.0376 ± 0.0009	0.0415 ± 0.0007	0.0385 ± 0.0004	0.0434 ± 0.0102	0.0482 ± 0.0055	0.0380 ± 0.0006

examaccuracy

datasets	BR	LR	CC	GCC	LPLC	BNCC
emotions	0.5627 ± 0.0180	0.5518 ± 0.0217	0.5830 ± 0.0233	0.4024 ± 0.0490	0.4053 ± 0.0279	0.5837 ± 0.0057
flags	0.5770 ± 0.0220	0.5703 ± 0.0204	0.5842 ± 0.0158	0.5067 ± 0.0440	0.5103 ± 0.0329	0.5864 ± 0.0058
scene	0.7163 ± 0.0144	0.6975 ± 0.0094	0.7361 ± 0.0128	0.6914 ± 0.0289	0.6451 ± 0.0255	0.7414 ± 0.0046
yeast	0.5088 ± 0.0083	0.4778 ± 0.0085	0.5251 ± 0.0094	0.2062 ± 0.0102	0.5246 ± 0.0193	0.5350 ± 0.0035
medical	0.7610 ± 0.0138	0.1186 ± 0.0413	0.7757 ± 0.0140	0.8197 ± 0.0416	0.6076 ± 0.0435	0.7844 ± 0.0014
enron	0.4416 ± 0.0267	0.3599 ± 0.0397	0.4499 ± 0.0222	0.4626 ± 0.0211	0.0608 ± 0.0763	0.4517 ± 0.0046
genbase	0.9919 ± 0.0104	0.3695 ± 0.2038	0.9899 ± 0.0089	0.9917 ± 0.0085	0.9715 ± 0.0149	0.9933 ± 0.0023
science	0.3135 ± 0.0177	0.1150 ± 0.0088	0.3175 ± 0.0123	0.3671 ± 0.0206	0.2570 ± 0.0193	0.3254 ± 0.0137
art	0.2990 ± 0.0081	0.1456 ± 0.0143	0.3114 ± 0.0065	0.3713 ± 0.0730	0.0521 ± 0.0462	0.3128 ± 0.0055
CAL500	0.2051 ± 0.0083	0.0909 ± 0.0102	0.2021 ± 0.0192	0.2106 ± 0.0158	0.2376 ± 0.0137	0.2054 ± 0.0034
education	0.3171 ± 0.0104	0.1092 ± 0.0104	0.3260 ± 0.0070	0.3596 ± 0.0571	0.3159 ± 0.0262	0.3292 ± 0.0066

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣

04	-	-	
нx	ы		10

datasets	BR	LR	CC	GCC	LPLC	BNCC
emotions	0.6763 ± 0.0169	0.6584 ± 0.0201	0.6957 ± 0.0235	0.4796 ± 0.0504	0.4907 ± 0.0344	0.6952 ± 0.0044
flags	0.7046 ± 0.0218	0.6899 ± 0.0217	0.7073 ± 0.0133	0.6418 ± 0.0374	0.6573 ± 0.0256	0.7149 ± 0.0048
scene	0.7493 ± 0.0129	0.7270 ± 0.0087	0.7601 ± 0.0127	0.7028 ± 0.0290	0.6595 ± 0.0251	0.7633 ± 0.0037
yeast	0.6434 ± 0.0087	0.6205 ± 0.0088	0.6550 ± 0.0103	0.6231 ± 0.0247	0.6348 ± 0.0185	0.6632 ± 0.0040
medical	0.7993 ± 0.0143	$NaN \pm NaN$	0.8107 ± 0.0129	0.7012 ± 0.0437	0.6425 ± 0.0417	0.8184 ± 0.0018
enron	0.5787 ± 0.0250	0.4900 ± 0.0449	0.5830 ± 0.0230	0.5717 ± 0.0198	0.0764 ± 0.0951	0.5856 ± 0.0060
genbase	0.9953 ± 0.0067	0.3792 ± 0.2051	0.9941 ± 0.0059	0.9942 ± 0.0064	0.9802 ± 0.0108	0.9962 ± 0.0017
science	0.350 ± 30.0175	0.1292 ± 0.0099	0.3521 ± 0.0140	0.3841 ± 0.0214	0.2750 ± 0.0214	0.3613 ± 0.0147
art	0.3343 ± 0.0093	0.1670 ± 0.0167	0.3474 ± 0.0063	0.4045 ± 0.0558	0.0603 ± 0.0564	0.3481 ± 0.0070
CAL500	0.3401 ± 0.0115	0.1672 ± 0.0174	0.3347 ± 0.0266	0.3412 ± 0.0205	0.3796 ± 0.0169	0.3413 ± 0.0050
education	0.3512 ± 0.0107	0.1261 ± 0.0113	0.3607 ± 0.0079	0.3876 ± 0.0420	0.3457 ± 0.0259	0.3623 ± 0.0077

m	a	c	ro	E
	a	÷	v	۰.

datasets	BR	LR	CC	GCC	LPLC	BNCC
emotions	0.6558 ± 0.0210	0.6571 ± 0.0155	0.6724 ± 0.0201	0.4776 ± 0.0687	0.5120 ± 0.0408	0.6736 ± 0.0075
flags	0.5912 ± 0.0351	0.6449 ± 0.0303	0.6012 ± 0.0240	0.4361 ± 0.0489	0.6026 ± 0.0295	0.6219 ± 0.0214
scene	0.7809 ± 0.0091	0.7750 ± 0.0086	0.7769 ± 0.0109	0.7137 ± 0.0254	0.6851 ± 0.0220	0.7891 ± 0.0051
yeast	0.3355 ± 0.0051	0.3118 ± 0.0040	0.3628 ± 0.0079	0.3535 ± 0.0156	0.4501 ± 0.0207	0.3717 ± 0.0034
medical	0.3385 ± 0.0158	0.0837 ± 0.0272	0.3375 ± 0.0124	0.3185 ± 0.0289	0.1918 ± 0.0223	0.3401 ± 0.0110
enron	0.1940 ± 0.0230	0.1607 ± 0.0261	0.1942 ± 0.0205	0.1462 ± 0.0137	0.0071 ± 0.0126	0.1852 ± 0.0070
genbase	0.6550 ± 0.0435	0.3073 ± 0.1402	0.6537 ± 0.0697	0.6387 ± 0.0655	0.5801 ± 0.0438	0.6582 ± 0.0023
science	0.2073 ± 0.0246	0.1301 ± 0.0137	0.2147 ± 0.0155	0.1743 ± 0.0172	0.1712 ± 0.0172	0.2068 ± 0.0075
art	0.2113 ± 0.0048	0.1326 ± 0.0156	0.2212 ± 0.0150	0.1932 ± 0.0171	0.0067 ± 0.0089	0.2185 ± 0.0067
CAL500	0.0613 ± 0.0038	0.0376 ± 0.0034	0.1008 ± 0.0110	0.0552 ± 0.0070	0.2194 ± 0.0105	0.1162 ± 0.0037
education	0.1901 ± 0.0115	0.1240 ± 0.0093	0.1883 ± 0.0155	0.1660 ± 0.0232	0.1606 ± 0.0185	0.1901 ± 0.0109

microF

datasets	BR	LR	CC	GCC	LPLC	BNCC
emotions	0.6872 ± 0.0165	0.6831 ± 0.0191	0.6960 ± 0.0189	0.5093 ± 0.0663	0.5312 ± 0.0400	0.6979 ± 0.0068
flags	0.7176 ± 0.0206	0.7233 ± 0.0164	0.7236 ± 0.0140	0.6607 ± 0.0330	0.6741 ± 0.0282	0.7310 ± 0.0059
scene	0.7723 ± 0.0104	0.7692 ± 0.0099	0.7697 ± 0.0107	0.7030 ± 0.0265	0.6892 ± 0.0221	0.7826 ± 0.0045
yeast	0.6403 ± 0.0070	0.6174 ± 0.0074	0.6516 ± 0.0080	0.6434 ± 0.0186	0.6468 ± 0.0161	0.6601 ± 0.0034
medical	0.8218 ± 0.0112	0.1919 ± 0.0625	0.8209 ± 0.0104	0.8202 ± 0.0304	0.6785 ± 0.0380	0.8262 ± 0.0065
enron	0.5580 ± 0.0217	0.4810 ± 0.0344	0.5614 ± 0.0194	0.5765 ± 0.0167	0.0638 ± 0.0823	0.5626 ± 0.0058
genbase	0.9934 ± 0.0078	0.5530 ± 0.2397	0.9906 ± 0.0081	0.9926 ± 0.0069	0.9657 ± 0.0188	0.9941 ± 0.0016
science	0.4016 ± 0.0178	0.1955 ± 0.0142	0.3966 ± 0.0108	0.4156 ± 0.0192	0.3148 ± 0.0250	0.4044 ± 0.0130
art	0.3822 ± 0.0081	0.2222 ± 0.0212	0.3877 ± 0.0118	0.3952 ± 0.0491	0.0577 ± 0.0545	0.3858 ± 0.0064
CAL500	0.3338 ± 0.0114	0.1652 ± 0.0158	0.3322 ± 0.0257	0.3380 ± 0.0210	0.3813 ± 0.0170	0.3365 ± 0.0045
education	0.4206 ± 0.0107	0.1920 ± 0.0152	0.4217 ± 0.0085	0.4234 ± 0.0456	0.3855 ± 0.0281	0.4243 ± 0.0104

◆□> ◆圖> ◆注> ◆注> 「注」

Thank you